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6.2 Introduction
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Trees are used in many areas of computer science, including operating systems, graphics,
database systems, and computer networking. A tree data structure has a root, branches,
and leaves. The difference between a tree in nature and a tree in computer science is that
a tree data structure has its root at the top and its leaves on the bottom!
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Trees are used in many areas of computer science, including operating systems, graphics,
database systems, and computer networking. A tree data structure has a root, branches,
and leaves. The difference between a tree in nature and a tree in computer science is that
a tree data structure has its root at the top and its leaves on the bottom!

Our first example of a tree is a classification tree from biology which shows an example of
the biological classification of some animals.

This example demonstrates that trees are hierarchical. By hierarchical, we mean that trees
are structured in layers with the more general things near the top and the more specific
things near the bottom. The top of the hierarchy is the kingdom, the next layer of the tree
(the "children" of the layer above) is the phylum, then the class, and so on.
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Notice that you can start at the top of the tree and follow a path made of circles and
arrows all the way to the bottom. At each level of the tree we might ask ourselves a
question and then follow the path that agrees with our answer.
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A second property of trees is that all of the children of one node are independent of
the children of another node while the third property is that each leaf node is unique.
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A second property of trees is that all of the children of one node are independent of
the children of another node while the third property is that each leaf node is unique.

Another example of a tree structure that you probably use every day is a file system. In a
file system, directories, or folders, are structured as a tree. The file system tree enables you
to follow a path from the root to any directory. That path will uniquely identify that
subdirectory
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Note that we could take the entire subtree staring with /etc/ , detach etc/  from the
root and reattach it under usr/ . This would change the unique pathname to httpd from
/etc/httpd  to /usr/etc/httpd , but would not affect the contents or any children of
the httpd directory!
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6.3. Vocabulary and De�nitions
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Node: A node is a fundamental part of a tree. It can have a name, which we call the
key. A node may also have additional information. We call this additional
information the value or payload.
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to show that there is a relationship between them. Every node (except the root) is
connected by exactly one incoming edge from another node. Each node may
have several outgoing edges.
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Node: A node is a fundamental part of a tree. It can have a name, which we call the
key. A node may also have additional information. We call this additional
information the value or payload.

Edge: An edge is another fundamental part of a tree. An edge connects two nodes
to show that there is a relationship between them. Every node (except the root) is
connected by exactly one incoming edge from another node. Each node may
have several outgoing edges.

Root: The root of the tree is the only node in the tree that has no incoming edges.

Path: A path is an ordered list of nodes that are connected by edges, for example,
Mammalia -> Carnivora -> Felidae -> Felis -> catus is a path.
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Children: The set of nodes that have incoming edges from the same node are said
to be the children of that node.
Parent: A node is the parent of all the nodes it connects to with outgoing edges.
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Children: The set of nodes that have incoming edges from the same node are said
to be the children of that node.
Parent: A node is the parent of all the nodes it connects to with outgoing edges.

Sibling: Nodes in the tree that are children of the same parent are said to be
siblings. The nodes etc/  and usr/  are siblings in the file system tree shown in
Figure 2.
Subtree: A subtree is a set of nodes and edges comprised of a parent and all the
descendants of that parent.
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Children: The set of nodes that have incoming edges from the same node are said
to be the children of that node.
Parent: A node is the parent of all the nodes it connects to with outgoing edges.

Sibling: Nodes in the tree that are children of the same parent are said to be
siblings. The nodes etc/  and usr/  are siblings in the file system tree shown in
Figure 2.
Subtree: A subtree is a set of nodes and edges comprised of a parent and all the
descendants of that parent.

Leaf Node: A leaf node is a node that has no children.
Level: The level of a node  is the number of edges on the path from the root node
to .
Height: The height of a tree is equal to the maximum level of any node in the tree.

n

n
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Definition One: A tree consists of a set of nodes and a set of edges that connect pairs of
nodes. A tree has the following properties:
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Definition One: A tree consists of a set of nodes and a set of edges that connect pairs of
nodes. A tree has the following properties:

1. One node of the tree is designated as the root node.

2. Every node , except the root node, is connected by an edge from exactly one
other node , where  is the parent of .

n
p p n
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Definition One: A tree consists of a set of nodes and a set of edges that connect pairs of
nodes. A tree has the following properties:

1. One node of the tree is designated as the root node.

2. Every node , except the root node, is connected by an edge from exactly one
other node , where  is the parent of .

n
p p n

3. A unique path traverses from the root to each node.

4. If each node in the tree has a maximum of two children, we say that the tree is a
binary tree.
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The arrowheads on the edges indicate the direction of the connection.
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Definition Two: A tree is either empty or consists of a root and zero or more subtrees,
each of which is also a tree. The root of each subtree is connected to the root of the
parent tree by an edge.
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Definition Two: A tree is either empty or consists of a root and zero or more subtrees,
each of which is also a tree. The root of each subtree is connected to the root of the
parent tree by an edge.

Figure below illustrates this recursive definition of a tree. Using the recursive definition of
a tree, we know that the tree below has at least four nodes (if it is not empty) since each
of the triangles representing a subtree must have a root. It may have many more nodes
than that, but we do not know unless we look deeper into the tree!

13 /  121



Definition Two: A tree is either empty or consists of a root and zero or more subtrees,
each of which is also a tree. The root of each subtree is connected to the root of the
parent tree by an edge.

Figure below illustrates this recursive definition of a tree. Using the recursive definition of
a tree, we know that the tree below has at least four nodes (if it is not empty) since each
of the triangles representing a subtree must have a root. It may have many more nodes
than that, but we do not know unless we look deeper into the tree!

13 /  121



6.4. Tree ADT
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We can use the following functions to create and manipulate a binary tree:
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BinaryTree() : creates a new instance of a binary tree.

get_root_val() : returns the value stored in the current node.

set_root_val(val) : stores the value in parameter val  in the current node.
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We can use the following functions to create and manipulate a binary tree:

BinaryTree() : creates a new instance of a binary tree.

get_root_val() : returns the value stored in the current node.

set_root_val(val) : stores the value in parameter val  in the current node.

get_left_child() : returns the binary tree corresponding to the left child of the
current node.
get_right_child() : returns the binary tree corresponding to the right child of
the current node.
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insert_left(val) : creates a new binary tree and installs it as the left child of the
current node.

insert_right(val) : creates a new binary tree and installs it as the right child of
the current node.
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insert_left(val) : creates a new binary tree and installs it as the left child of the
current node.

insert_right(val) : creates a new binary tree and installs it as the right child of
the current node.

The key decision in implementing a tree is choosing a good internal storage technique.
We have two very interesting possibilities, and we will examine both before choosing one.
We call them list of lists and nodes and references.
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6.6. Nodes and References
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Our second method to represent a tree uses nodes and references. In this case we will
define a class that has attributes for the root value as well as the left and right subtrees.
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define a class that has attributes for the root value as well as the left and right subtrees.

Using nodes and references, we might think of the tree as being structured like the one
shown below:
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Our second method to represent a tree uses nodes and references. In this case we will
define a class that has attributes for the root value as well as the left and right subtrees.

Using nodes and references, we might think of the tree as being structured like the one
shown below:

Since this representation more closely follows the object-oriented programming
paradigm, we will continue to use this representation for the remainder of the chapter.
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We will start out with a simple class definition for the nodes and references approach as
shown below. The important thing to remember about this representation is that the
attributes left_child  and right_child  will become references to other instances of
the BinaryTree  class. For example, when we insert a new left child into the tree, we
create another instance of BinaryTree  and modify self.left_child  in the root to
reference the new tree.
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In [6]: class BinaryTree:
    def __init__(self, root_obj):
        self.key = root_obj
        self.left_child = None
        self.right_child = None
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We will start out with a simple class definition for the nodes and references approach as
shown below. The important thing to remember about this representation is that the
attributes left_child  and right_child  will become references to other instances of
the BinaryTree  class. For example, when we insert a new left child into the tree, we
create another instance of BinaryTree  and modify self.left_child  in the root to
reference the new tree.

In [6]: class BinaryTree:
    def __init__(self, root_obj):
        self.key = root_obj
        self.left_child = None
        self.right_child = None

Just as you can store any object you like in a list, the root object of a tree can be a
reference to any object. For our early examples, we will store the name of the node as the
root value. Using nodes and references to represent the tree above, we would create six
instances of the BinaryTree  class.
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Next let's look at the functions we need to build the tree beyond the root node. To add a
left child to the tree, we will create a new binary tree object and set the left_child
attribute of the root to refer to this new object.
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In [7]: def insert_left(self, new_node):
    if self.left_child is None:
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        new_child.left_child = self.left_child
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Next let's look at the functions we need to build the tree beyond the root node. To add a
left child to the tree, we will create a new binary tree object and set the left_child
attribute of the root to refer to this new object.

In [7]: def insert_left(self, new_node):
    if self.left_child is None:
        self.left_child = BinaryTree(new_node)
    else:
        new_child = BinaryTree(new_node)
        new_child.left_child = self.left_child
        self.left_child = new_child

Note that we consider two cases for insertion. The first case is characterized by a node
with no existing left child. When there is no left child, simply add a node to the tree. The
second case is characterized by a node with an existing left child. In the second case, we
insert a node and push the existing child down one level in the tree.
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In [8]: def insert_right(self, new_node):
    if self.right_child == None:
        self.right_child = BinaryTree(new_node)
    else:
        new_child = BinaryTree(new_node)
        new_child.right_child = self.right_child
        self.right_child = new_child
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    if self.right_child == None:
        self.right_child = BinaryTree(new_node)
    else:
        new_child = BinaryTree(new_node)
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        self.right_child = new_child

To round out the definition for a simple binary tree data structure, we will write accessor
methods for the left and right children and for the root values:
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In [8]: def insert_right(self, new_node):
    if self.right_child == None:
        self.right_child = BinaryTree(new_node)
    else:
        new_child = BinaryTree(new_node)
        new_child.right_child = self.right_child
        self.right_child = new_child

To round out the definition for a simple binary tree data structure, we will write accessor
methods for the left and right children and for the root values:

In [9]: def get_root_val(self):
    return self.key
def set_root_val(self, new_key):
    self.key = new_key

def get_left_child(self):
    return self.left_child
def get_right_child(self):
    return self.right_child
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Now that we have all the pieces to create and manipulate a binary tree, let's use them to
check on the structure a bit more. Let's make a simple tree with node a as the root, and
add nodes "b" and "c" as children
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In [10]: import sys
sys.path.append("./pythonds3/")
from pythonds3.trees import BinaryTree
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Now that we have all the pieces to create and manipulate a binary tree, let's use them to
check on the structure a bit more. Let's make a simple tree with node a as the root, and
add nodes "b" and "c" as children

In [10]: import sys
sys.path.append("./pythonds3/")
from pythonds3.trees import BinaryTree

In [11]: a_tree = BinaryTree("a")
print(a_tree.get_root_val())
print(a_tree.get_left_child())
a_tree.insert_left("b")
print(a_tree.get_left_child())
print(a_tree.get_left_child().get_root_val())
a_tree.insert_right("c")
print(a_tree.get_right_child())
print(a_tree.get_right_child().get_root_val())
a_tree.get_right_child().set_root_val("hello")
print(a_tree.get_right_child().get_root_val())

a
None
<pythonds3.trees.binary_tree.BinaryTree object at 0x0000027F9965DE80>
b
<pythonds3.trees.binary_tree.BinaryTree object at 0x0000027F9965DEE0>
c
hello
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6.7. Parse Tree
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Parse trees can be used to represent real-world constructions like sentences or
mathematical expressions. Figure below shows the hierarchical structure of a simple
sentence. Representing a sentence as a tree structure allows us to work with the individual
parts of the sentence by using subtrees.
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We can also represent a mathematical expression such as  as a parse
tree, as shown below:

((7 + 3) ⋅ (5 − 2))
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We can also represent a mathematical expression such as  as a parse
tree, as shown below:

((7 + 3) ⋅ (5 − 2))

We know that multiplication has a higher precedence than either addition or subtraction.
Because of the parentheses, we know that before we can do the multiplication we must
evaluate the parenthesized addition and subtraction expressions. The hierarchy of the tree
helps us understand the order of evaluation for the whole expression!
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Before we can evaluate the top-level multiplication, we must evaluate the addition and
the subtraction in the subtrees. The addition, which is the left subtree, evaluates to 10. The
subtraction, which is the right subtree, evaluates to 3.
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the subtraction in the subtrees. The addition, which is the left subtree, evaluates to 10. The
subtraction, which is the right subtree, evaluates to 3.

Using the hierarchical structure of trees, we can simply replace an entire subtree with one
node once we have evaluated the expressions in the children. Applying this replacement
procedure gives us the simplified tree shown below:
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In the rest of this section we are going to examine parse trees in more detail. In particular
we will look at

How to build a parse tree from a fully parenthesized mathematical expression.
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In the rest of this section we are going to examine parse trees in more detail. In particular
we will look at

How to build a parse tree from a fully parenthesized mathematical expression.

How to evaluate the expression stored in a parse tree.

How to recover the original mathematical expression from a parse tree.

The first step in building a parse tree is to break up the expression string into a list of
tokens. There are four different kinds of tokens to consider: left parentheses, right
parentheses, operators, and operands.
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We know that whenever we read a left parenthesis we are starting a new expression, and
hence we should create a new tree to correspond to that expression. Conversely,
whenever we read a right parenthesis, we have finished an expression.
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hence we should create a new tree to correspond to that expression. Conversely,
whenever we read a right parenthesis, we have finished an expression.

We also know that operands are going to be leaf nodes and children of their operators.
Finally, we know that every operator is going to have both a left and a right child. Using
the information from above we can define four rules as follows:
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We know that whenever we read a left parenthesis we are starting a new expression, and
hence we should create a new tree to correspond to that expression. Conversely,
whenever we read a right parenthesis, we have finished an expression.

We also know that operands are going to be leaf nodes and children of their operators.
Finally, we know that every operator is going to have both a left and a right child. Using
the information from above we can define four rules as follows:

1. If the current token is a ( , add a new node as the left child of the current node,
and descend to the left child.
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2. If the current token is in the list ["+", "-", "/", "*"] , set the root value of the
current node to the operator represented by the current token. Add a new node as
the right child of the current node and descend to the right child.
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2. If the current token is in the list ["+", "-", "/", "*"] , set the root value of the
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3. If the current token is a number, set the root value of the current node to the
number and return to the parent.
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2. If the current token is in the list ["+", "-", "/", "*"] , set the root value of the
current node to the operator represented by the current token. Add a new node as
the right child of the current node and descend to the right child.

3. If the current token is a number, set the root value of the current node to the
number and return to the parent.

4. If the current token is a ) , go to the parent of the current node.

Let's look at an example of the rules outlined above in action. We will use the expression
. We will parse this expression into the following list of character tokens: ["

(", "3", "+", "(", "4", "*", "5", ")", ")"] . Initially we will start out with a
parse tree that consists of an empty root node.

(3 + (4 ∗ 5))
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Figure below illustrates the structure and contents of the parse tree as each new token is
processed:
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From the example above, it is clear that we need to keep track of the current node as well
as the parent of the current node. The tree interface provides us with a way to get
children of a node, through the get_left_child()  and get_right_child()
methods, but how can we keep track of the parent?
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From the example above, it is clear that we need to keep track of the current node as well
as the parent of the current node. The tree interface provides us with a way to get
children of a node, through the get_left_child()  and get_right_child()
methods, but how can we keep track of the parent?

A simple solution to keeping track of parents as we traverse the tree is to use a stack.
Whenever we want to descend to a child of the current node, we first push the current
node on the stack. When we want to return to the parent of the current node, we pop the
parent off the stack!
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In [12]: from pythonds3.basic import Stack
from pythonds3.trees import BinaryTree

def build_parse_tree(fp_expr):
    fp_list = fp_expr.split()
    p_stack = Stack()
    expr_tree = BinaryTree("")
    p_stack.push(expr_tree)
    current_tree = expr_tree

    for i in fp_list:
        if i == "(":
            current_tree.insert_left("")
            p_stack.push(current_tree)
            current_tree = current_tree.left_child
        elif i in ["+", "-", "*", "/"]:
            current_tree.root = i
            current_tree.insert_right("")
            p_stack.push(current_tree)
            current_tree = current_tree.right_child
        elif i.isdigit():
              current_tree.root = int(i)
              parent = p_stack.pop()
              current_tree = parent
        elif i == ")":
              current_tree = p_stack.pop()
        else:
              raise ValueError(f"Unknown operator '{i}'")
    return expr_tree
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The four rules for building a parse tree are coded as the first four clauses of the
if..elif  statements. In each case you can see that the code implements the rule, as
described above, with a few calls to the BinaryTree  or Stack  methods. The only error
checking we do in this function is in the else  clause where a ValueError  exception will
be raised if we get a token from the list that we do not recognize.
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In [13]: pt = build_parse_tree("( 3 + ( 4 * 5 ) )")
pt.inorder()  # defined and explained in the next section
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The four rules for building a parse tree are coded as the first four clauses of the
if..elif  statements. In each case you can see that the code implements the rule, as
described above, with a few calls to the BinaryTree  or Stack  methods. The only error
checking we do in this function is in the else  clause where a ValueError  exception will
be raised if we get a token from the list that we do not recognize.

In [13]: pt = build_parse_tree("( 3 + ( 4 * 5 ) )")
pt.inorder()  # defined and explained in the next section

3 + 4 * 5 

Now that we have built a parse tree, what can we do with it? As a first example, we will
write a function to evaluate the parse tree and return the numerical result. To write this
function, we will make use of the hierarchical nature of the tree.
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Recall that we can replace the original tree with the simplified tree shown in above Figure.
This suggests that we can write an algorithm that evaluates a parse tree by recursively
evaluating each subtree.
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A natural base case for recursive algorithms that operate on trees is to check for a leaf
node. In a parse tree, the leaf nodes will always be operands. Since numerical objects like
integers and floating points require no further interpretation, the evaluate function can
simply return the value stored in the leaf node.

36 /  121



Recall that we can replace the original tree with the simplified tree shown in above Figure.
This suggests that we can write an algorithm that evaluates a parse tree by recursively
evaluating each subtree.

A natural base case for recursive algorithms that operate on trees is to check for a leaf
node. In a parse tree, the leaf nodes will always be operands. Since numerical objects like
integers and floating points require no further interpretation, the evaluate function can
simply return the value stored in the leaf node.

The recursive step that moves the function toward the base case is to call evaluate on
both the left and the right children of the current node. The recursive call effectively
moves us down the tree, toward a leaf node.
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To put the results of the two recursive calls together, we can simply apply the operator
stored in the parent node to the results returned from evaluating both children. The code
for a recursive evaluate function is shown below:
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To put the results of the two recursive calls together, we can simply apply the operator
stored in the parent node to the results returned from evaluating both children. The code
for a recursive evaluate function is shown below:

In [14]: import operator

def evaluate(parse_tree):
    operators = {
        "+": operator.add,
        "-": operator.sub,
        "*": operator.mul,
        "/": operator.truediv,
    }

    left_child = parse_tree.left_child
    right_child = parse_tree.right_child

    if left_child and right_child:
        fn = operators[parse_tree.root]
        return fn(evaluate(left_child), evaluate(right_child))
    else:
        return parse_tree.root
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To implement the arithmetic, we use a dictionary with the keys + , - , * , and / . The
values stored in the dictionary are functions from Python's operator module. The
operator module provides us with the function versions of many commonly used
operators. When we look up an operator in the dictionary, the corresponding function
object is retrieved. Since the retrieved object is a function, we can call it in the usual way:
function(param1, param2) . So the lookup operators ["+"](2, 2)  is equivalent to
operator.add(2, 2) .
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object is retrieved. Since the retrieved object is a function, we can call it in the usual way:
function(param1, param2) . So the lookup operators ["+"](2, 2)  is equivalent to
operator.add(2, 2) .

Finally, we will trace the evaluate function on the parse tree we created before. When we
first call evaluate() , we pass the root of the entire tree as the parameter
parse_tree() . Then we obtain references to the left and right children to make sure
they exist. The recursive call takes place on line 16.
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To implement the arithmetic, we use a dictionary with the keys + , - , * , and / . The
values stored in the dictionary are functions from Python's operator module. The
operator module provides us with the function versions of many commonly used
operators. When we look up an operator in the dictionary, the corresponding function
object is retrieved. Since the retrieved object is a function, we can call it in the usual way:
function(param1, param2) . So the lookup operators ["+"](2, 2)  is equivalent to
operator.add(2, 2) .

Finally, we will trace the evaluate function on the parse tree we created before. When we
first call evaluate() , we pass the root of the entire tree as the parameter
parse_tree() . Then we obtain references to the left and right children to make sure
they exist. The recursive call takes place on line 16.

In [15]: evaluate(pt)

Out[15]: 23
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6.8. Tree Traversals
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Now it is time to look at some additional usage patterns for trees. These usage patterns
can be divided into three commonly used patterns to visit all the nodes in a tree.
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The difference between these patterns is the order in which each node is visited. We call
this visitation of the nodes a tree traversal. The three traversals we will look at are called
preorder, inorder, and postorder. Let's start out by defining these three traversals more
carefully, then look at some examples where these patterns are useful.
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Now it is time to look at some additional usage patterns for trees. These usage patterns
can be divided into three commonly used patterns to visit all the nodes in a tree.

The difference between these patterns is the order in which each node is visited. We call
this visitation of the nodes a tree traversal. The three traversals we will look at are called
preorder, inorder, and postorder. Let's start out by defining these three traversals more
carefully, then look at some examples where these patterns are useful.

Preorder: In a preorder traversal, we visit the root node first, then recursively do a
preorder traversal of the left subtree, followed by a recursive preorder traversal of
the right subtree.
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Inorder: In an inorder traversal, we recursively do an inorder traversal on the left
subtree, visit the root node, and finally do a recursive inorder traversal of the right
subtree.
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Inorder: In an inorder traversal, we recursively do an inorder traversal on the left
subtree, visit the root node, and finally do a recursive inorder traversal of the right
subtree.

Postorder: In a postorder traversal, we recursively do a postorder traversal of the
left subtree and the right subtree followed by a visit to the root node.
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Inorder: In an inorder traversal, we recursively do an inorder traversal on the left
subtree, visit the root node, and finally do a recursive inorder traversal of the right
subtree.

Postorder: In a postorder traversal, we recursively do a postorder traversal of the
left subtree and the right subtree followed by a visit to the root node.

First let’s look at the preorder traversal using a book as an example tree. The book is the
root of the tree, and each chapter is a child of the root. Each section within a chapter is a
child of the chapter, each subsection is a child of its section, and so on.
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Suppose that you wanted to read this book from front to back. The preorder traversal
gives you exactly that ordering.
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The code for writing tree traversals is surprisingly elegant, largely because the traversals
are written recursively. The code belwo shows a version of the preorder traversal written
as an external function that takes a binary tree as a parameter. The external function is
particularly elegant because our base case is simply to check if the tree exists. If the tree
parameter is None , then the function returns without taking any action.
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The code for writing tree traversals is surprisingly elegant, largely because the traversals
are written recursively. The code belwo shows a version of the preorder traversal written
as an external function that takes a binary tree as a parameter. The external function is
particularly elegant because our base case is simply to check if the tree exists. If the tree
parameter is None , then the function returns without taking any action.

In [16]: def preorder(tree):
    if tree:
        print(tree._key, end=" ")
        preorder(tree._left_child)
        preorder(tree._right_child)
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The code for writing tree traversals is surprisingly elegant, largely because the traversals
are written recursively. The code belwo shows a version of the preorder traversal written
as an external function that takes a binary tree as a parameter. The external function is
particularly elegant because our base case is simply to check if the tree exists. If the tree
parameter is None , then the function returns without taking any action.

In [16]: def preorder(tree):
    if tree:
        print(tree._key, end=" ")
        preorder(tree._left_child)
        preorder(tree._right_child)

In [17]: preorder(pt)

+ 3 * 4 5 
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Implementing preorder as an external function is probably better in this case. The reason
is that you very rarely want to just traverse the tree. In most cases you are going to want
to accomplish something else while using one of the basic traversal patterns.
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In fact, we will see in the next example that the postorder traversal pattern follows very
closely with the code we wrote earlier to evaluate a parse tree. Therefore we will write the
rest of the traversals as external functions.
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is that you very rarely want to just traverse the tree. In most cases you are going to want
to accomplish something else while using one of the basic traversal patterns.

In fact, we will see in the next example that the postorder traversal pattern follows very
closely with the code we wrote earlier to evaluate a parse tree. Therefore we will write the
rest of the traversals as external functions.

In [20]: def postorder(tree):
    if tree:
        postorder(tree._left_child)
        postorder(tree._right_child)
        print(tree._key, end=" ")
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Implementing preorder as an external function is probably better in this case. The reason
is that you very rarely want to just traverse the tree. In most cases you are going to want
to accomplish something else while using one of the basic traversal patterns.

In fact, we will see in the next example that the postorder traversal pattern follows very
closely with the code we wrote earlier to evaluate a parse tree. Therefore we will write the
rest of the traversals as external functions.

In [20]: def postorder(tree):
    if tree:
        postorder(tree._left_child)
        postorder(tree._right_child)
        print(tree._key, end=" ")

In [21]: postorder(pt)

3 4 5 * + 
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We have already seen a common use for the postorder traversal, namely evaluating a
parse tree. Assuming our binary tree is going to store only expression tree data, rewrite
the evaluation function, but model it even more closely on the postorder code, we have:
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We have already seen a common use for the postorder traversal, namely evaluating a
parse tree. Assuming our binary tree is going to store only expression tree data, rewrite
the evaluation function, but model it even more closely on the postorder code, we have:

In [23]: def postordereval(tree):
    operators = {
        "+": operator.add,
        "-": operator.sub,
        "*": operator.mul,
        "/": operator.truediv,
    }
    result_1 = None
    result_2 = None
    if tree:
        result_1 = postordereval(tree._left_child)
        result_2 = postordereval(tree._right_child)
        if result_1 and result_2:
            return operators[tree._key](result_1, result_2)
        return tree._key
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We have already seen a common use for the postorder traversal, namely evaluating a
parse tree. Assuming our binary tree is going to store only expression tree data, rewrite
the evaluation function, but model it even more closely on the postorder code, we have:

In [23]: def postordereval(tree):
    operators = {
        "+": operator.add,
        "-": operator.sub,
        "*": operator.mul,
        "/": operator.truediv,
    }
    result_1 = None
    result_2 = None
    if tree:
        result_1 = postordereval(tree._left_child)
        result_2 = postordereval(tree._right_child)
        if result_1 and result_2:
            return operators[tree._key](result_1, result_2)
        return tree._key

In [24]: postordereval(pt)

Out[24]: 23
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Note that except that instead of printing the key at the end of the function, we return it.
This allows us to save the values returned from the recursive calls. We then use these
saved values along with the operator.
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The final traversal we will look at in this section is the inorder traversal. In the inorder
traversal we visit the left subtree, followed by the root, and finally the right subtree.
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This allows us to save the values returned from the recursive calls. We then use these
saved values along with the operator.

The final traversal we will look at in this section is the inorder traversal. In the inorder
traversal we visit the left subtree, followed by the root, and finally the right subtree.

In [25]: def inorder(tree):
    if tree:
        inorder(tree._left_child)
        print(tree._key, end=" ")
        inorder(tree._right_child)
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Note that except that instead of printing the key at the end of the function, we return it.
This allows us to save the values returned from the recursive calls. We then use these
saved values along with the operator.

The final traversal we will look at in this section is the inorder traversal. In the inorder
traversal we visit the left subtree, followed by the root, and finally the right subtree.

In [25]: def inorder(tree):
    if tree:
        inorder(tree._left_child)
        print(tree._key, end=" ")
        inorder(tree._right_child)

In [26]: inorder(pt)

3 + 4 * 5 
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If we perform a simple inorder traversal of a parse tree, we get our original expression
back without any parentheses. Let's modify the basic inorder algorithm to allow us to
recover the fully parenthesized version of the expression. The only modifications we will
make to the basic template are as follows.
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make to the basic template are as follows.

Print a left parenthesis before the recursive call to the left subtree, and print a right
parenthesis after the recursive call to the right subtree:
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If we perform a simple inorder traversal of a parse tree, we get our original expression
back without any parentheses. Let's modify the basic inorder algorithm to allow us to
recover the fully parenthesized version of the expression. The only modifications we will
make to the basic template are as follows.

Print a left parenthesis before the recursive call to the left subtree, and print a right
parenthesis after the recursive call to the right subtree:

In [28]: def print_exp(tree):
    result = ""
    if tree:
        result = "(" + print_exp(tree._left_child)
        result = result + str(tree._key)
        result = result + print_exp(tree._right_child) + ")"
    return result
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If we perform a simple inorder traversal of a parse tree, we get our original expression
back without any parentheses. Let's modify the basic inorder algorithm to allow us to
recover the fully parenthesized version of the expression. The only modifications we will
make to the basic template are as follows.

Print a left parenthesis before the recursive call to the left subtree, and print a right
parenthesis after the recursive call to the right subtree:

In [28]: def print_exp(tree):
    result = ""
    if tree:
        result = "(" + print_exp(tree._left_child)
        result = result + str(tree._key)
        result = result + print_exp(tree._right_child) + ")"
    return result

In [29]: print_exp(pt)

Out[29]: '((3)+((4)*(5)))'
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Exercise 1: Clean up the print_exp()  function so that it does not include an extra set of
parentheses around each number.
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parentheses around each number.

In [30]: def print_exp(tree):
    result = ""
    if tree:
        result = "(" + print_exp(tree._left_child)
        result = result + str(tree._key)
        result = result + print_exp(tree._right_child) + ")"
    return result
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Exercise 1: Clean up the print_exp()  function so that it does not include an extra set of
parentheses around each number.

In [30]: def print_exp(tree):
    result = ""
    if tree:
        result = "(" + print_exp(tree._left_child)
        result = result + str(tree._key)
        result = result + print_exp(tree._right_child) + ")"
    return result

In [31]: print_exp(pt)

Out[31]: '((3)+((4)*(5)))'
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6.9. Priority Queues with Binary Heaps
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You can probably think of a couple of easy ways to implement a priority queue using
sorting functions and lists. However, inserting into a list is  and sorting a list is

.
O(n)

O(n logn)
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We can do better. The classic way to implement a priority queue is using a data structure
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You can probably think of a couple of easy ways to implement a priority queue using
sorting functions and lists. However, inserting into a list is  and sorting a list is

.
O(n)

O(n logn)

We can do better. The classic way to implement a priority queue is using a data structure
called a binary heap. A binary heap will allow us both to enqueue and dequeue items in

.O(logn)

The binary heap is interesting to study because when we diagram the heap it looks a lot
like a tree, but when we implement it we use only a single list as an internal
representation. The binary heap has two common variations: the min heap, in which the
smallest key value is always at the front, and the max heap, in which the largest key value
is always at the front. In this section we will implement the min heap.
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6.10. Binary Heap Operations
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BinaryHeap() : creates a new empty binary heap.

insert(k) : adds a new item to the heap.

get_min() : returns the item with the minimum key value, leaving the item in the
heap.
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BinaryHeap() : creates a new empty binary heap.

insert(k) : adds a new item to the heap.

get_min() : returns the item with the minimum key value, leaving the item in the
heap.

delete() : returns the item with the minimum key value, removing the item from
the heap.

is_empty() : returns True  if the heap is empty, False  otherwise.

size() : returns the number of items in the heap.

heapify(list) : builds a new heap from a list of keys.
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In [32]: from pythonds3.trees import BinaryHeap

my_heap = BinaryHeap()
my_heap.insert(5)
my_heap.insert(7)
my_heap.insert(3)
my_heap.insert(11)

print(my_heap.delete())
print(my_heap.delete())
print(my_heap.delete())
print(my_heap.delete())

3
5
7
11
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In [32]: from pythonds3.trees import BinaryHeap

my_heap = BinaryHeap()
my_heap.insert(5)
my_heap.insert(7)
my_heap.insert(3)
my_heap.insert(11)

print(my_heap.delete())
print(my_heap.delete())
print(my_heap.delete())
print(my_heap.delete())

3
5
7
11

Notice that no matter what order we add items to the heap, the smallest is removed each
time!
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6.11. Binary Heap Implementation
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In order to make our heap work efficiently, we will take advantage of the logarithmic
nature of the binary tree to represent our heap.
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In order to make our heap work efficiently, we will take advantage of the logarithmic
nature of the binary tree to represent our heap.

In order to guarantee logarithmic performance, we must keep our tree balanced. A
balanced binary tree has roughly the same number of nodes in the left and right subtrees
of the root. In our heap implementation we keep the tree balanced by creating a
complete binary tree.
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In order to make our heap work efficiently, we will take advantage of the logarithmic
nature of the binary tree to represent our heap.

In order to guarantee logarithmic performance, we must keep our tree balanced. A
balanced binary tree has roughly the same number of nodes in the left and right subtrees
of the root. In our heap implementation we keep the tree balanced by creating a
complete binary tree.

A complete binary tree is a tree in which each level has all of its nodes. The exception to
this is the bottom level of the tree, which we fill in from left to right. Figure below shows
an example of a complete binary tree.
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Another interesting property of a complete tree is that we can represent it using a single
list. We do not need to use nodes and references or even lists of lists. Because the tree is
complete, the left child of a parent (at position ) is the node that is found in position

 in the list!
p

2p + 1
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Another interesting property of a complete tree is that we can represent it using a single
list. We do not need to use nodes and references or even lists of lists. Because the tree is
complete, the left child of a parent (at position ) is the node that is found in position

 in the list!
p

2p + 1

Similarly, the right child of the parent is at position  in the list. To find the parent of
any node in the tree, we can simply use integer division. Given that a node is at position 
in the list, the parent is at position .

2p + 2
n

(n − 1)//2
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Figure below shows a complete binary tree and also gives the list representation of the
tree. Note the  and  relationship between parent and children.2p + 1 2p + 2
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Figure below shows a complete binary tree and also gives the list representation of the
tree. Note the  and  relationship between parent and children.2p + 1 2p + 2

The list representation of the tree, along with the full structure property, allows us to
efficiently traverse a complete binary tree using only a few simple mathematical
operations.
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The method that we will use to store items in a heap relies on maintaining the heap order
property. The heap order property is as follows: in a heap, for every node  with parent ,
the key in  is smaller than or equal to the key in . Figure above also illustrates a
complete binary tree that has the heap order property.

x p

p x
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We now begin our implementation of a binary heap with the constructor. Since the entire
binary heap can be represented by a single list, all the constructor will do is initialize the
list:
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The method that we will use to store items in a heap relies on maintaining the heap order
property. The heap order property is as follows: in a heap, for every node  with parent ,
the key in  is smaller than or equal to the key in . Figure above also illustrates a
complete binary tree that has the heap order property.

x p

p x

We now begin our implementation of a binary heap with the constructor. Since the entire
binary heap can be represented by a single list, all the constructor will do is initialize the
list:

In [34]: class BinaryHeap:
    def __init__(self):
        self._heap = []
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The next method we will implement is insert() . The easiest, and most efficient, way to
add an item to a list is to simply append the item to the end of the list. The good news
about appending is that it guarantees that we will maintain the complete tree property.
The bad news about appending is that we will very likely violate the heap structure
property.
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about appending is that it guarantees that we will maintain the complete tree property.
The bad news about appending is that we will very likely violate the heap structure
property.

However, it is possible to write a method that will allow us to regain the heap structure
property by comparing the newly added item with its parent. If the newly added item is
less than its parent, then we can swap the item with its parent.
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The next method we will implement is insert() . The easiest, and most efficient, way to
add an item to a list is to simply append the item to the end of the list. The good news
about appending is that it guarantees that we will maintain the complete tree property.
The bad news about appending is that we will very likely violate the heap structure
property.

However, it is possible to write a method that will allow us to regain the heap structure
property by comparing the newly added item with its parent. If the newly added item is
less than its parent, then we can swap the item with its parent.

Figure below shows the series of swaps needed to percolate the newly added item up to
its proper position in the tree.
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Notice that when we percolate an item up, we are restoring the heap property between
the newly added item and the parent. We are also preserving the heap property for any
siblings. Of course, if the newly added item is very small, we may still need to swap it up
another level. In fact, we may need to keep swapping until we get to the top of the tree!
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In [35]: def _perc_up(self, i):
    while (i - 1) // 2 >= 0:
        parent_idx = (i - 1) // 2
        if self._heap[i] < self._heap[parent_idx]:
            self._heap[i], self._heap[parent_idx] = (
                self._heap[parent_idx],
                self._heap[i],
            )
        i = parent_idx
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In [35]: def _perc_up(self, i):
    while (i - 1) // 2 >= 0:
        parent_idx = (i - 1) // 2
        if self._heap[i] < self._heap[parent_idx]:
            self._heap[i], self._heap[parent_idx] = (
                self._heap[parent_idx],
                self._heap[i],
            )
        i = parent_idx

We are now ready to write the insert()  method. Most of the work in the insert()
method is really done by _perc_up() . Once a new item is appended to the tree,
_perc_up()  takes over and positions the new item properly.
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In [37]: def insert(self, item):
    self._heap.append(item)
    self._perc_up(len(self._heap) - 1)
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In [37]: def insert(self, item):
    self._heap.append(item)
    self._perc_up(len(self._heap) - 1)

With the insert()  method properly defined, we can now look at the delete()
method. Since the heap property requires that the root of the tree be the smallest item in
the tree, finding the minimum item is easy.
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In [37]: def insert(self, item):
    self._heap.append(item)
    self._perc_up(len(self._heap) - 1)

With the insert()  method properly defined, we can now look at the delete()
method. Since the heap property requires that the root of the tree be the smallest item in
the tree, finding the minimum item is easy.

The hard part of delete is restoring full compliance with the heap structure and heap
order properties after the root has been removed. We can restore our heap in two steps.
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In order to maintain the heap order property, all we need to do is swap the root with its
smaller child that is less than the root. After the initial swap, we may repeat the swapping
process with a node and its children until the node is swapped into a position on the tree
where it is already less than both children.
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In order to maintain the heap order property, all we need to do is swap the root with its
smaller child that is less than the root. After the initial swap, we may repeat the swapping
process with a node and its children until the node is swapped into a position on the tree
where it is already less than both children.

In [38]: def _perc_down(self, i):
    while 2 * i + 1 < len(self._heap):
        sm_child = self._get_min_child(i)
        if self._heap[i] > self._heap[sm_child]:
            self._heap[i], self._heap[sm_child] = (
                self._heap[sm_child],
                self._heap[i],
            )
        else:
            break
        i = sm_child

def _get_min_child(self, i):
    if 2 * i + 2 > len(self._heap) - 1:
        return 2 * i + 1
    if self._heap[2 * i + 1] < self._heap[2 * i + 2]:
        return 2 * i + 1
    return 2 * i + 2
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The code for the delete operation is in below. Note that once again the hard work is
handled by a helper function, in this case _perc_down() .
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The code for the delete operation is in below. Note that once again the hard work is
handled by a helper function, in this case _perc_down() .

In [39]: def delete(self):
    self._heap[0], self._heap[-1] = self._heap[-1], self._heap[0]
    result = self._heap.pop()
    self._perc_down(0)
    return result
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To finish our discussion of binary heaps, we will look at a method to build an entire heap
from a list of keys. The first method you might think of may be like the following. Given a
list of keys, you could easily build a heap by inserting each key one at a time. Since you
are starting with an empy list, it is sorted and you could use binary search to find the right
position to insert the next key at a cost of approximately  operations.O(logn)
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However, remember that inserting an item in the middle of the list may require 
operations to shift the rest of the list over to make room for the new key.

O(n)
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To finish our discussion of binary heaps, we will look at a method to build an entire heap
from a list of keys. The first method you might think of may be like the following. Given a
list of keys, you could easily build a heap by inserting each key one at a time. Since you
are starting with an empy list, it is sorted and you could use binary search to find the right
position to insert the next key at a cost of approximately  operations.O(logn)

However, remember that inserting an item in the middle of the list may require 
operations to shift the rest of the list over to make room for the new key.

O(n)

Therefore, to insert  keys into the heap would require a total of  operations.
However, if we start with an entire list then we can build the whole heap in 
operations.

n O(n2)
O(n)
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In [41]: def heapify(self, not_a_heap):
    self._heap = not_a_heap[:]
    i = len(self._heap) // 2 - 1
    while i >= 0:
        self._perc_down(i)
        i = i - 1
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    i = len(self._heap) // 2 - 1
    while i >= 0:
        self._perc_down(i)
        i = i - 1
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Figure above shows the swaps that the hepify()  method makes as it moves the nodes
in an initial tree of [9, 6, 5, 2, 3]  into their proper positions. Although we start out
in the middle of the tree and work our way back toward the root, the _perc_down()
method ensures that the largest child is always moved down the tree. Because the heap is
a complete binary tree, any nodes past the halfway point will be leaves and therefore have
no children!
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Figure above shows the swaps that the hepify()  method makes as it moves the nodes
in an initial tree of [9, 6, 5, 2, 3]  into their proper positions. Although we start out
in the middle of the tree and work our way back toward the root, the _perc_down()
method ensures that the largest child is always moved down the tree. Because the heap is
a complete binary tree, any nodes past the halfway point will be leaves and therefore have
no children!

Notice that when i = 0 , we are percolating down from the root of the tree, so this may
require multiple swaps. As you can see in the rightmost two trees of the figure, first the 9
is moved out of the root position, but after 9 is moved down one level in the tree,
_perc_down()  ensures that we check the next set of children farther down in the tree to
ensure that it is pushed as low as it can go.
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Figure above shows the swaps that the hepify()  method makes as it moves the nodes
in an initial tree of [9, 6, 5, 2, 3]  into their proper positions. Although we start out
in the middle of the tree and work our way back toward the root, the _perc_down()
method ensures that the largest child is always moved down the tree. Because the heap is
a complete binary tree, any nodes past the halfway point will be leaves and therefore have
no children!

Notice that when i = 0 , we are percolating down from the root of the tree, so this may
require multiple swaps. As you can see in the rightmost two trees of the figure, first the 9
is moved out of the root position, but after 9 is moved down one level in the tree,
_perc_down()  ensures that we check the next set of children farther down in the tree to
ensure that it is pushed as low as it can go.

In this case it results in a second swap with 3. Now that 9 has been moved to the lowest
level of the tree, no further swapping can be done.
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In [43]: from pythonds3.trees import BinaryHeap

a_heap = BinaryHeap()
a_heap.heapify([10, 4, 9, 8, 12, 15, 3, 5, 14, 18])

#while not a_heap.is_empty():
#    print(a_heap.delete())
print(a_heap)

[3, 4, 9, 5, 12, 15, 10, 8, 14, 18]
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In [43]: from pythonds3.trees import BinaryHeap

a_heap = BinaryHeap()
a_heap.heapify([10, 4, 9, 8, 12, 15, 3, 5, 14, 18])

#while not a_heap.is_empty():
#    print(a_heap.delete())
print(a_heap)

[3, 4, 9, 5, 12, 15, 10, 8, 14, 18]

The assertion that we can build the heap in  may seem a bit mysterious at first, and a
proof is beyond the scope of this course. However, the key to understanding that you can
build the heap in  is to remember that the  factor is derived from the height of
the tree. For most of the work in heapify() , the tree is shorter than .

O(n)

O(n) logn
logn
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Exercise 2: Using the heapify()  and delete()  method, write a sorting function that can sort a
list in  time.O(n logn)
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Exercise 2: Using the heapify()  and delete()  method, write a sorting function that can sort a
list in  time.O(n logn)

In [44]: def heap_sort(unsorted_list) :
    """Sorts a list using heap sort."""
    heap = BinaryHeap()
    # 1. Build the heap in O(n) time

    # 2. The main sorting loop involves calling delete on the heap 
    # to get the smallest element and adding this to the sorted list.
    # Each delete operation is O(log n)
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In [45]: # Example list to be sorted
unsorted_list = [10, 3, 5, 1, 15, 7, 9, 2, 8]

# Sort the list using heap sort
sorted_list = heap_sort(unsorted_list)

# Print the sorted list
print("Sorted list:", sorted_list)

Sorted list: None
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6.12. Binary Search Trees
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We have already seen two different ways to get key-value pairs in a collection. Recall that
these collections implement the map abstract data type. The two implementations of the
map ADT that we have discussed were binary search on a list and hash tables.
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We have already seen two different ways to get key-value pairs in a collection. Recall that
these collections implement the map abstract data type. The two implementations of the
map ADT that we have discussed were binary search on a list and hash tables.

In this section we will study binary search trees as yet another way to map from a key to a
value. In this case we are not interested in the exact placement of items in the tree, but we
are interested in using the binary tree structure to provide for efficient searching.
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6.13. Search Tree Operations
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Before we look at the implementation, let's review the interface provided by the map ADT.
You will notice that this interface is very similar to the dictionary.

Map() : creates a new empty map.

put(key, val) : adds a new key–value pair to the map. If the key is already in the
map, it replaces the old value with the new value.
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Before we look at the implementation, let's review the interface provided by the map ADT.
You will notice that this interface is very similar to the dictionary.

Map() : creates a new empty map.

put(key, val) : adds a new key–value pair to the map. If the key is already in the
map, it replaces the old value with the new value.

get(key) : takes a key and returns the matching value stored in the map or None
otherwise.

del : deletes the key–value pair from the map using a statement of the form del 
map[key] .

size() : returns the number of key–value pairs stored in the map.

in : return True  for a statement of the form key in map if the given key is in the
map, False  otherwise.
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6.14. Search Tree Implementation
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A binary search tree (BST) relies on the property that keys that are less than the parent are
found in the left subtree, and keys that are greater than the parent are found in the right
subtree. We will call this the BST property.
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found in the left subtree, and keys that are greater than the parent are found in the right
subtree. We will call this the BST property.

Figure below illustrates this property of a binary search tree, showing the keys without any
associated values.
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Now that you know what a binary search tree is, we will look at how a binary search tree is
constructed. The search tree above represents the nodes that exist after we have inserted
the following keys in the order shown: . Since 70 was the first key
inserted into the tree, it is the root.

70, 31, 93, 94, 14, 23, 73
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constructed. The search tree above represents the nodes that exist after we have inserted
the following keys in the order shown: . Since 70 was the first key
inserted into the tree, it is the root.

70, 31, 93, 94, 14, 23, 73

Next, 31 is less than 70, so it becomes the left child of 70. Next, 93 is greater than 70, so it
becomes the right child of 70. Now we have two levels of the tree filled, so the next key is
going to be the left or right child of either 31 or 93.
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Now that you know what a binary search tree is, we will look at how a binary search tree is
constructed. The search tree above represents the nodes that exist after we have inserted
the following keys in the order shown: . Since 70 was the first key
inserted into the tree, it is the root.

70, 31, 93, 94, 14, 23, 73

Next, 31 is less than 70, so it becomes the left child of 70. Next, 93 is greater than 70, so it
becomes the right child of 70. Now we have two levels of the tree filled, so the next key is
going to be the left or right child of either 31 or 93.

Since 94 is greater than 70 and 93, it becomes the right child of 93. Similarly 14 is less
than 70 and 31, so it becomes the left child of 31. 23 is also less than 31, so it must be in
the left subtree of 31. However, it is greater than 14, so it becomes the right child of 14.
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To implement the binary search tree, we will use the nodes and references approach
similar to the one we used to implement the linked list and the expression tree.
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However, because we must be able create and work with a binary search tree that is
empty, our implementation will use two classes. The first class we will call
BinarySearchTree , and the second class we will call TreeNode .
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To implement the binary search tree, we will use the nodes and references approach
similar to the one we used to implement the linked list and the expression tree.

However, because we must be able create and work with a binary search tree that is
empty, our implementation will use two classes. The first class we will call
BinarySearchTree , and the second class we will call TreeNode .

The BinarySearchTree  class has a reference to the TreeNode  that is the root of the
binary search tree. In most cases the external methods defined in the outer class simply
check to see if the tree is empty. If there are nodes in the tree, the request is just passed
on to a private method defined in the BinarySearchTree  class that takes the root as a
parameter.
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In the case where the tree is empty or we want to delete the key at the root of the tree,
we must take special action.
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In the case where the tree is empty or we want to delete the key at the root of the tree,
we must take special action.

In [47]: class BinarySearchTree:
    def __init__(self):
        self.root = None
        self.size = 0

    def __len__(self):
        return self.size

    def __iter__(self):
        return self.root.__iter__()
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In the case where the tree is empty or we want to delete the key at the root of the tree,
we must take special action.

In [47]: class BinarySearchTree:
    def __init__(self):
        self.root = None
        self.size = 0

    def __len__(self):
        return self.size

    def __iter__(self):
        return self.root.__iter__()

The TreeNode  class provides many helper methods that make the work done in the
BinarySearchTree  class methods much easier.
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In [48]: class TreeNode:
    def __init__(self, key, value, left=None, right=None, parent=None):
        self.key = key
        self.value = value
        self.left_child = left
        self.right_child = right
        self.parent = parent

    def is_left_child(self):
        return self.parent and self.parent.left_child is self
    def is_right_child(self):
        return self.parent and self.parent.right_child is self
    def is_root(self):
        return not self.parent
    def is_leaf(self):
        return not (self.right_child or self.left_child)
    def has_any_child(self):
        return self.right_child or self.left_child
    def has_children(self):
        return self.right_child and self.left_child

    def replace_value(self, key, value, left, right):
        self.key = key
        self.value = value
        self.left_child = left
        self.right_child = right
        if self.left_child:
            self.left_child.parent = self
        if self.right_child:
            self.right_child.parent = self
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The TreeNode  class will also explicitly keep track of the parent as an attribute of each
node. You will see why this is important when we discuss the implementation for the del
operator.
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The TreeNode  class will also explicitly keep track of the parent as an attribute of each
node. You will see why this is important when we discuss the implementation for the del
operator.

Another interesting aspect is that we use optional parameters which make it easy for us to
create a TreeNode  under several different circumstances.
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The TreeNode  class will also explicitly keep track of the parent as an attribute of each
node. You will see why this is important when we discuss the implementation for the del
operator.

Another interesting aspect is that we use optional parameters which make it easy for us to
create a TreeNode  under several different circumstances.

Now that we have the BinarySearchTree  shell and the TreeNode , it is time to write
the put()  method that will allow us to build our binary search tree. The method is a
method of the BinarySearchTree  class. This method will check to see if the tree already
has a root. If there is not a root, then put()  will create a new TreeNode  and install it as
the root of the tree.
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If a root node is already in place, then put()  calls the private recursive helper method
_put()  to search the tree according to the following algorithm.
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If a root node is already in place, then put()  calls the private recursive helper method
_put()  to search the tree according to the following algorithm.

Starting at the root of the tree, search the binary tree comparing the new key to
the key in the current node. If the new key is less than the current node, search the
left subtree. If the new key is greater than the current node, search the right
subtree.
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If a root node is already in place, then put()  calls the private recursive helper method
_put()  to search the tree according to the following algorithm.

Starting at the root of the tree, search the binary tree comparing the new key to
the key in the current node. If the new key is less than the current node, search the
left subtree. If the new key is greater than the current node, search the right
subtree.

When there is no left or right child to search, we have found the position in the
tree where the new node should be installed.

To add a node to the tree, create a new TreeNode  object and insert the object at
the point discovered in the previous step.
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In [49]: def put(self, key, value):
    if self.root:
        self._put(key, value, self.root)
    else:
        self.root = TreeNode(key, value)
    self.size = self.size + 1

def _put(self, key, value, current_node):
    if key < current_node.key:
        if current_node.left_child:
            self._put(key, value, current_node.left_child)
        else:
            current_node.left_child = TreeNode(key, value, 
                                               parent=current_node)
    else:
        if current_node.right_child:
            self._put(key, value, current_node.right_child)
        else:
            current_node.right_child = TreeNode(key, value, 
                                                parent=current_node)
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In [49]: def put(self, key, value):
    if self.root:
        self._put(key, value, self.root)
    else:
        self.root = TreeNode(key, value)
    self.size = self.size + 1

def _put(self, key, value, current_node):
    if key < current_node.key:
        if current_node.left_child:
            self._put(key, value, current_node.left_child)
        else:
            current_node.left_child = TreeNode(key, value, 
                                               parent=current_node)
    else:
        if current_node.right_child:
            self._put(key, value, current_node.right_child)
        else:
            current_node.right_child = TreeNode(key, value, 
                                                parent=current_node)

With the put()  method defined, we can easily overload the []  operator for
assignment. This allows us to write statements like my_zip_tree['Plymouth'] = 
55446 , just like a Python dictionary!
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In [50]: def __setitem__(self, key, value):
    self.put(key, value)
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In [50]: def __setitem__(self, key, value):
    self.put(key, value)

Figure below illustrates the process for inserting a new node into a binary search tree. The
lightly shaded nodes indicate the nodes that were visited during the insertion process.
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The get()  method is even easier than the put()  method because it simply searches
the tree recursively until it gets to a non-matching leaf node or finds a matching key.
When a matching key is found, the value stored in the payload of the node is returned.
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The get()  method is even easier than the put()  method because it simply searches
the tree recursively until it gets to a non-matching leaf node or finds a matching key.
When a matching key is found, the value stored in the payload of the node is returned.

In [52]: def get(self, key):
    if self.root:
        result = self._get(key, self.root)
        if result:
            return result.value
    return None

def _get(self, key, current_node):
    if not current_node:
        return None
    if current_node.key == key:
        return current_node
    elif key < current_node.key:
        return self._get(key, current_node.left_child)
    else:
        return self._get(key, current_node.right_child)
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We can implement two to related methods as follows:
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We can implement two to related methods as follows:

In [53]: def __getitem__(self, key):
    return self.get(key)

def __contains__(self, key):
    return bool(self._get(key, self.root))
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Finally, we turn our attention to the most challenging operation on the binary search tree,
the deletion of a key. The first task is to find the node to delete by searching the tree. If
the tree has more than one node we search using the _get()  method to find the
TreeNode  that needs to be removed.

90 /  121



Finally, we turn our attention to the most challenging operation on the binary search tree,
the deletion of a key. The first task is to find the node to delete by searching the tree. If
the tree has more than one node we search using the _get()  method to find the
TreeNode  that needs to be removed.

If the tree only has a single node, that means we are removing the root of the tree, but we
still must check to make sure the key of the root matches the key that is to be deleted!
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Finally, we turn our attention to the most challenging operation on the binary search tree,
the deletion of a key. The first task is to find the node to delete by searching the tree. If
the tree has more than one node we search using the _get()  method to find the
TreeNode  that needs to be removed.

If the tree only has a single node, that means we are removing the root of the tree, but we
still must check to make sure the key of the root matches the key that is to be deleted!

In [54]: def delete(self, key):
    if self.size > 1:
        node_to_remove = self._get(key, self.root)
        if node_to_remove:
            self._delete(node_to_remove)
            self.size = self.size - 1
        else:
            raise KeyError("Error, key not in tree")
    elif self.size == 1 and self.root.key == key:
        self.root = None
        self.size = self.size - 1
    else:
        raise KeyError("Error, key not in tree")
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Once we've found the node containing the key we want to delete, there are three cases
that we must consider:
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Once we've found the node containing the key we want to delete, there are three cases
that we must consider:

1. The node to be deleted has no children
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The first case is straightforward. If the current node has no children, all we need to do is
delete the node and remove the reference to this node in the parent.
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The first case is straightforward. If the current node has no children, all we need to do is
delete the node and remove the reference to this node in the parent.

if current_node.is_leaf():
    if current_node == current_node.parent.left_child:
        current_node.parent.left_child = None
    else:
        current_node.parent.right_child = None
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The first case is straightforward. If the current node has no children, all we need to do is
delete the node and remove the reference to this node in the parent.

if current_node.is_leaf():
    if current_node == current_node.parent.left_child:
        current_node.parent.left_child = None
    else:
        current_node.parent.right_child = None

2. The node to be deleted has only one child
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The second case is only slightly more complicated. If a node has only a single child, then
we can simply promote the child to take the place of its parent. Since the six cases are
symmetric with respect to either having a left or right child, we will just discuss the case
where the current node has a left child.
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The second case is only slightly more complicated. If a node has only a single child, then
we can simply promote the child to take the place of its parent. Since the six cases are
symmetric with respect to either having a left or right child, we will just discuss the case
where the current node has a left child.

1. If the current node is a left child, then we only need to update the parent reference
of the left child to point to the parent of the current node, and then update the left
child reference of the parent to point to the current node's left child.
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The second case is only slightly more complicated. If a node has only a single child, then
we can simply promote the child to take the place of its parent. Since the six cases are
symmetric with respect to either having a left or right child, we will just discuss the case
where the current node has a left child.

1. If the current node is a left child, then we only need to update the parent reference
of the left child to point to the parent of the current node, and then update the left
child reference of the parent to point to the current node's left child.

2. If the current node is a right child, then we only need to update the parent
reference of the left child to point to the parent of the current node, and then
update the right child reference of the parent to point to the current node’s left
child.

3. If the current node has no parent, it must be the root. In this case we will just
replace the key , value , left_child , and right_child  data by calling the
replace_value method on the root.
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else:  # removing a node with one child
    if current_node.get_left_child():
        if current_node.is_left_child():
            current_node.left_child.parent = current_node.parent
            current_node.parent.left_child = current_node.left_child
        elif current_node.is_right_child():
            current_node.left_child.parent = current_node.parent
            current_node.parent.right_child = current_node.left_child
        else:
            current_node.replace_value(
                current_node.left_child.key,
                current_node.left_child.value,
                current_node.left_child.left_child,
                current_node.left_child.right_child,
            )
    else:
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3. The node to be deleted has two children

95 /  121



3. The node to be deleted has two children

The third case is the most difficult case to handle. If a node has two children, then it is
unlikely that we can simply promote one of them to take the node's place!
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We can, however, search the tree for a node that can be used to replace the one
scheduled for deletion. What we need is a node that will preserve the bst relationships for
both of the existing left and right subtrees. The node that will do this is the node that has
the next-largest key in the tree. We call this node the successor.
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scheduled for deletion. What we need is a node that will preserve the bst relationships for
both of the existing left and right subtrees. The node that will do this is the node that has
the next-largest key in the tree. We call this node the successor.

The successor is guaranteed to have no more than one child, so we know how to remove
it using the two cases for deletion that we have already implemented. Once the successor
has been removed, we simply put it in the tree in place of the node to be deleted. We
make use of the helper methods find_successor()  and splice_out()  to find and
remove the successor. The reason we use splice_out()  is that it goes directly to the
node we want to splice out and makes the right changes.
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We can, however, search the tree for a node that can be used to replace the one
scheduled for deletion. What we need is a node that will preserve the bst relationships for
both of the existing left and right subtrees. The node that will do this is the node that has
the next-largest key in the tree. We call this node the successor.

The successor is guaranteed to have no more than one child, so we know how to remove
it using the two cases for deletion that we have already implemented. Once the successor
has been removed, we simply put it in the tree in place of the node to be deleted. We
make use of the helper methods find_successor()  and splice_out()  to find and
remove the successor. The reason we use splice_out()  is that it goes directly to the
node we want to splice out and makes the right changes.

elif current_node.has_children():  # removing a node with two children
    successor = current_node.find_successor()
    successor.splice_out()
    current_node.key = successor.key
    current_node.value = successor.value
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In [55]: def find_successor(self): # a method of the TreeNode class
    successor = None
    if self.right_child:
        successor = self.right_child.find_min()
    else:
        if self.parent:
            if self.is_left_child():
                successor = self.parent
            else:
                self.parent.right_child = None
                successor = self.parent.find_successor()
                self.parent.right_child = self
    return successor

97 /  121



In [55]: def find_successor(self): # a method of the TreeNode class
    successor = None
    if self.right_child:
        successor = self.right_child.find_min()
    else:
        if self.parent:
            if self.is_left_child():
                successor = self.parent
            else:
                self.parent.right_child = None
                successor = self.parent.find_successor()
                self.parent.right_child = self
    return successor

This code makes use of the same properties of binary search trees that cause an inorder
traversal to print out the nodes in the tree from smallest to largest. There are three cases
to consider when looking for the successor:

1. If the node has a right child, then the successor is the smallest key in the right
subtree.
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                successor = self.parent
            else:
                self.parent.right_child = None
                successor = self.parent.find_successor()
                self.parent.right_child = self
    return successor

This code makes use of the same properties of binary search trees that cause an inorder
traversal to print out the nodes in the tree from smallest to largest. There are three cases
to consider when looking for the successor:

1. If the node has a right child, then the successor is the smallest key in the right
subtree.
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2. If the node has no right child and is the left child of its parent, then the parent is
the successor.

3. If the node is the right child of its parent, and itself has no right child, then the
successor to this node is the successor of its parent, excluding this node.

In [56]: def find_min(self):
    current = self
    while current.left_child:
        current = current.left_child
    return current
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In [56]: def find_min(self):
    current = self
    while current.left_child:
        current = current.left_child
    return current

The find_min()  method is called to find the minimum key in a subtree. You should
convince yourself that the minimum value key in any binary search tree is the leftmost
child of the tree. Therefore the find_min()  method simply follows the left_child
references in each node of the subtree until it reaches a node that does not have a left
child.
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In [57]: def splice_out(self):
    if self.is_leaf():
        if self.is_left_child():
            self.parent.left_child = None
        else:
            self.parent.right_child = None
    elif self.has_any_child():
        if self.left_child:
            if self.is_left_child():
                self.parent.left_child = self.left_child
            else:
                self.parent.right_child = self.left_child
            self.left_child.parent = self.parent
        else:
            if self.is_left_child():
                self.parent.left_child = self.right_child
            else:
                self.parent.right_child = self.right_child
            self.right_child.parent = self.parent
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We need to look at one last interface method for the binary search tree. Suppose that we
would like to simply iterate over all the keys in the tree in order. You already know how to
traverse a binary tree in order, using the inorder traversal algorithm. However, writing an
iterator requires a bit more work since an iterator should return only one node each time
the iterator is called.
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would like to simply iterate over all the keys in the tree in order. You already know how to
traverse a binary tree in order, using the inorder traversal algorithm. However, writing an
iterator requires a bit more work since an iterator should return only one node each time
the iterator is called.

In [59]: def __iter__(self):
    if self:
        if self.left_child:
            for elem in self.left_child:
                yield elem
        yield self.key
        if self.right_child:
            for elem in self.right_child:
                yield elem
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We need to look at one last interface method for the binary search tree. Suppose that we
would like to simply iterate over all the keys in the tree in order. You already know how to
traverse a binary tree in order, using the inorder traversal algorithm. However, writing an
iterator requires a bit more work since an iterator should return only one node each time
the iterator is called.

In [59]: def __iter__(self):
    if self:
        if self.left_child:
            for elem in self.left_child:
                yield elem
        yield self.key
        if self.right_child:
            for elem in self.right_child:
                yield elem

At first glance you might think that the code is not recursive. However, remember that
__iter__  overrides the for ... in  operation for iteration, so it really is recursive!
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In [61]: from pythonds3.trees import BinarySearchTree

my_tree = BinarySearchTree()
my_tree["a"], my_tree["q"] = "a", "quick"
my_tree["b"], my_tree["f"] = "brown", "fox"
my_tree["j"], my_tree["o"] = "jumps", "over"
my_tree["t"], my_tree["l"] = "the", "lazy"
my_tree["d"] = "dog"

print(my_tree["q"])
print(my_tree["l"])
print("There are {} items in this tree".format(len(my_tree)))
my_tree.delete("a")
print("There are {} items in this tree".format(len(my_tree)))

for node in my_tree:
    print(my_tree[node], end=" ")
print()

quick
lazy
There are 9 items in this tree
There are 8 items in this tree
brown dog fox jumps lazy over quick the 
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Exercise 3: Using the put()  and in  method, write a sorting function that can sort a list in
 time in average case.O(n logn)
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Exercise 3: Using the put()  and in  method, write a sorting function that can sort a list in
 time in average case.O(n logn)

In [62]: def tree_sort(values):
    bst = BinarySearchTree()
    # 1. Insert all elements into the BST. Each insert is O(log n) on average,
    # leading to O(n log n) for all insertions if the tree is balanced.

    # 2. Perform an in-order traversal of the BST. This operation is O(n)
    # because each node is visited exactly once in sorted order.
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Exercise 3: Using the put()  and in  method, write a sorting function that can sort a list in
 time in average case.O(n logn)

In [62]: def tree_sort(values):
    bst = BinarySearchTree()
    # 1. Insert all elements into the BST. Each insert is O(log n) on average,
    # leading to O(n log n) for all insertions if the tree is balanced.

    # 2. Perform an in-order traversal of the BST. This operation is O(n)
    # because each node is visited exactly once in sorted order.

In [63]: # Example list to be sorted
unsorted_list = [20, 1, 15, 22, 10, 3, 7, 5, 8, 12]

# Sort the list using tree sort
sorted_list = tree_sort(unsorted_list)

# Print the sorted list
print("Sorted list:", sorted_list)

Sorted list: None
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6.15. Search Tree Analysis
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Let's first look at the put()  method. The limiting factor on its performance is the height
of the binary tree. Recall from the vocabulary section that the height of a tree is the
number of edges between the root and the deepest leaf node.
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of the binary tree. Recall from the vocabulary section that the height of a tree is the
number of edges between the root and the deepest leaf node.

The height is the limiting factor because when we are searching for the appropriate place
to insert a node into the tree, we will need to do at most one comparison at each level of
the tree!
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Let's first look at the put()  method. The limiting factor on its performance is the height
of the binary tree. Recall from the vocabulary section that the height of a tree is the
number of edges between the root and the deepest leaf node.

The height is the limiting factor because when we are searching for the appropriate place
to insert a node into the tree, we will need to do at most one comparison at each level of
the tree!

Note that if the keys are added in a random order, the height of the tree is going to be
around  where  is the number of nodes in the tree. This is because if the keys are
randomly distributed, about half of them will be less than the root and about half will be
greater than the root.

log2 n n
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Remember that in a binary tree there is one node at the root, two nodes in the next level,
and four at the next. The number of nodes at any particular level is  where  is the
depth of the level. The total number of nodes in a perfectly balanced binary tree is

, where  represents the height of the tree.

2d d

2h+1 − 1 h
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and four at the next. The number of nodes at any particular level is  where  is the
depth of the level. The total number of nodes in a perfectly balanced binary tree is

, where  represents the height of the tree.

2d d

2h+1 − 1 h

A perfectly balanced tree has the same number of nodes in the left subtree as the right
subtree. In a balanced binary tree, the worst-case performance of put()  is .O(log2 n)
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Remember that in a binary tree there is one node at the root, two nodes in the next level,
and four at the next. The number of nodes at any particular level is  where  is the
depth of the level. The total number of nodes in a perfectly balanced binary tree is

, where  represents the height of the tree.

2d d

2h+1 − 1 h

A perfectly balanced tree has the same number of nodes in the left subtree as the right
subtree. In a balanced binary tree, the worst-case performance of put()  is .O(log2 n)

Notice that this is the inverse relationship to the calculation in the previous paragraph. So
 gives us the height of the tree and represents the maximum number of

comparisons that put()  will need to do as it searches for the proper place to insert a
new node.

log2 n
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Unfortunately it is possible to construct a search tree that has height  simply by inserting
the keys in sorted order! An example of this is shown below:

n
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Unfortunately it is possible to construct a search tree that has height  simply by inserting
the keys in sorted order! An example of this is shown below:

n

In this case the performance of the put method is .O(n)
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Now that you understand that the performance of the put()  method is limited by the
height of the tree, you can probably guess that other methods, get() , in , and del ,
are limited as well. Since get()  searches the tree to find the key, in the worst case the
tree is searched all the way to the bottom and no key is found.
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Now that you understand that the performance of the put()  method is limited by the
height of the tree, you can probably guess that other methods, get() , in , and del ,
are limited as well. Since get()  searches the tree to find the key, in the worst case the
tree is searched all the way to the bottom and no key is found.

At first glance del  might seem more complicated since it may need to search for the
successor before the deletion operation can complete. But remember that the worst-case
scenario to find the successor is also just the height of the tree which means that you
would simply double the work. Since doubling is a constant factor, it does not change
worst-case analysis of  for an unbalanced tree.O(n)
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6.16. Balanced Binary Search Trees
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In the previous section we looked at building a binary search tree. As we learned, the
performance of the binary search tree can degrade to  for operations like get()
and put()  when the tree becomes unbalanced.

O(n)
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In this section we will look at a special kind of binary search tree that automatically makes
sure that the tree remains balanced at all times. This tree is called an AVL tree.
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In the previous section we looked at building a binary search tree. As we learned, the
performance of the binary search tree can degrade to  for operations like get()
and put()  when the tree becomes unbalanced.

O(n)

In this section we will look at a special kind of binary search tree that automatically makes
sure that the tree remains balanced at all times. This tree is called an AVL tree.

An AVL tree implements the Map  abstract data type just like a regular binary search tree;
the only difference is in how the tree performs. To implement our AVL tree we need to
keep track of a balance factor for each node in the tree.
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We do this by looking at the heights of the left and right subtrees for each node. More
formally, we define the balance factor for a node as the difference between the height of
the left subtree and the height of the right subtree.
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We do this by looking at the heights of the left and right subtrees for each node. More
formally, we define the balance factor for a node as the difference between the height of
the left subtree and the height of the right subtree.

balance_factor = height(left_subtree) − height(right_subtree)

110 /  121



We do this by looking at the heights of the left and right subtrees for each node. More
formally, we define the balance factor for a node as the difference between the height of
the left subtree and the height of the right subtree.

balance_factor = height(left_subtree) − height(right_subtree)

Using the definition for balance factor given above, we say that a subtree is left-heavy if
the balance factor is greater than zero. If the balance factor is less than zero, then the
subtree is right-heavy. If the balance factor is zero, then the tree is perfectly in balance.
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For purposes of implementing an AVL tree and gaining the benefit of having a balanced
tree, we will define a tree to be in balance if the balance factor is -1, 0, or 1. Once the
balance factor of a node in a tree is outside this range we will need to have a procedure
to bring the tree back into balance.
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For purposes of implementing an AVL tree and gaining the benefit of having a balanced
tree, we will define a tree to be in balance if the balance factor is -1, 0, or 1. Once the
balance factor of a node in a tree is outside this range we will need to have a procedure
to bring the tree back into balance.

Below shows an example of an unbalanced right-heavy tree and the balance factors of
each node:
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6.17. AVL Tree Performance
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Before we proceed any further let's look at the result of enforcing this new balance factor
requirement. Our claim is that by ensuring that a tree always has a balance factor of -1, 0,
or 1 we can get better Big-O performance of key operations.
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Before we proceed any further let's look at the result of enforcing this new balance factor
requirement. Our claim is that by ensuring that a tree always has a balance factor of -1, 0,
or 1 we can get better Big-O performance of key operations.

Let us start by thinking about how this balance condition changes the worst-case tree.
There are two possibilities to consider, a left-heavy tree and a right-heavy tree. If we
consider trees of heights 0, 1, 2, and 3, Figure below illustrates the most unbalanced left-
heavy tree possible under the new rules.
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Looking at the total number of nodes in the tree we see that for a tree of height 0 there is
1 node, for a tree of height 1 there is  nodes, for a tree of height 2 there are

, and for a tree of height 3 there are . More generally the
pattern we see for the number of nodes in a tree of height  is:

1 + 1 = 2
1 + 1 + 2 = 4 1 + 2 + 4 = 7

Nh
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, and for a tree of height 3 there are . More generally the
pattern we see for the number of nodes in a tree of height  is:

1 + 1 = 2
1 + 1 + 2 = 4 1 + 2 + 4 = 7

Nh

Nh = 1 + Nh−1 + Nh−2
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Looking at the total number of nodes in the tree we see that for a tree of height 0 there is
1 node, for a tree of height 1 there is  nodes, for a tree of height 2 there are

, and for a tree of height 3 there are . More generally the
pattern we see for the number of nodes in a tree of height  is:

1 + 1 = 2
1 + 1 + 2 = 4 1 + 2 + 4 = 7

Nh

Nh = 1 + Nh−1 + Nh−2

This recurrence may look familiar to you because it is very similar to the Fibonacci
sequence. We can use this fact to derive a formula for the height of an AVL tree given the
number of nodes in the tree.
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Recall that for the Fibonacci sequence the  Fibonacci number is given by:ith
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F0 = 0
F1 = 1
Fi = Fi−1 + Fi−2 for all i ≥ 2
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Recall that for the Fibonacci sequence the  Fibonacci number is given by:ith

F0 = 0
F1 = 1
Fi = Fi−1 + Fi−2 for all i ≥ 2

An important mathematical result is that as the numbers of the Fibonacci sequence get
larger and larger the ratio of  becomes closer and closer to approximating the
golden ratio  which is defined as .

Fi/Fi−1

Φ Φ = 1+√5
2
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We will simply use this equation to approximate  as . If we make use of
this approximation we can rewrite the equation for  as:

Fi Fi = Φi/√5
Nh
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We will simply use this equation to approximate  as . If we make use of
this approximation we can rewrite the equation for  as:

Fi Fi = Φi/√5
Nh

Nh = Fh+3 − 1,h ≥ 1

By replacing the Fibonacci reference with its golden ratio approximation we get:
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We will simply use this equation to approximate  as . If we make use of
this approximation we can rewrite the equation for  as:

Fi Fi = Φi/√5
Nh

Nh = Fh+3 − 1,h ≥ 1

By replacing the Fibonacci reference with its golden ratio approximation we get:

Nh = − 1
Φh+2

√5
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If we rearrange the terms, take the base 2 log of both sides, and then solve for , we get
the following derivation:

h
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If we rearrange the terms, take the base 2 log of both sides, and then solve for , we get
the following derivation:

h

logNh + 1 = (h + 2) log Φ − log 5

h =

h = 1.44 logNh

1
2

log (Nh + 1) − 2 log Φ + log 51
2

log Φ
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If we rearrange the terms, take the base 2 log of both sides, and then solve for , we get
the following derivation:

h

logNh + 1 = (h + 2) log Φ − log 5

h =

h = 1.44 logNh

1
2

log (Nh + 1) − 2 log Φ + log 51
2

log Φ

This derivation shows us that at any time the height of our AVL tree is equal to a constant
(1.44) times the log of the number of nodes in the tree. This is great news for searching
our AVL tree because it limits the search to .O(logn)
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6.19. Summary of Map ADT Implementations

118 /  121



Over the past two chapters we have looked at several data structures that can be used to
implement the map abstract data type: a binary search on a list, a hash table, a binary
search tree, and a balanced binary search tree. To conclude this section, let’s summarize
the performance of each data structure for the key operations defined by the map ADT:
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Over the past two chapters we have looked at several data structures that can be used to
implement the map abstract data type: a binary search on a list, a hash table, a binary
search tree, and a balanced binary search tree. To conclude this section, let’s summarize
the performance of each data structure for the key operations defined by the map ADT:

operation Sorted
List

Hash
Table

Binary
Search

Tree
AVL Tree

put()

get()

in()

del()

O(n) O(1) O(n)
O(log2

n)

O(log2 n) O(1) O(n)
O(log2

n)

O(log2 n) O(1) O(n)
O(log2

n)

O(1) O(1) O(n)
O(log2

n)
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